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With exascale computing on the horizon, reducing performance variability in data management tasks (stor-
age, visualization, analysis, etc.) is becoming a key challenge in sustaining high performance. This variabil-
ity significantly impacts the overall application performance at scale and its predictability over time.

In this paper, we present Damaris, a system that leverages dedicated cores in multicore nodes to offload
data management tasks, including I/O, data compression, scheduling of data movements, in situ analysis
and visualization. We evaluate Damaris with the CM1 atmospheric simulation and the Nek5000 computa-
tional fluid dynamic simulation on four platforms, including NICS’s Kraken and NCSA’s Blue Waters. Our
results show in particular that (1) Damaris fully hides the I/O variability as well as all I/O-related costs,
which makes simulation performance predictable; (2) it increases the sustained write throughput by a factor
of up to 15 compared with standard I/O approaches; (3) it allows almost perfect scalability of the simulation
up to over 9,000 cores, as opposed to state-of-the-art approaches that fail to scale; (4) it enables a seamless
connection to the VisIt visualization software to perform in situ analysis and visualization in a way that
does not impact the performance of the simulation, nor its variability.

In addition, we further extended our implementation of Damaris to also support the use of dedicated
nodes and conducted a thorough comparison of the two approaches –dedicated cores and dedicated nodes–
for I/O tasks with the aforementioned applications.
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1. INTRODUCTION
As supercomputers become larger and more complex, one critical challenge is to effi-
ciently handle the immense amounts of data generated by extreme-scale simulations.
The traditional approach to data management consists of writing data to a parallel
file system, using a high-level I/O library on top of a standardized interface such as
MPI-I/O. This data is then read back for analysis and visualization purpose.

One major issue posed by this traditional approach to data management is that it
induces a high performance variability. This variability can be observed at different
levels. Within a single application, I/O contention across processes leads to large vari-
ations in the time each process takes to complete its I/O operations (I/O jitter). Such
differences from a process to another in a massively parallel application makes all
processes wait for the slowest one. These processes thus waste valuable computation
time. The variability is even larger from one I/O phase to another, due to interference
with other applications sharing the same parallel file system.

While scientists have found a potential solution to this problem by coupling their
simulations with visualization software in order to bypass data storage and derive re-
sults early on, the current practices of coupling simulations with visualization tools
also expose simulations to high performance variability, as their run time does not de-
pend anymore on their own scalability only, but also on the scalability of visualization
algorithms. This particular problem is further amplified in the context of interactive
in situ visualization, where the user himself and his interactions with the simulation
become the cause of run-time variability.

To make an efficient use of future exascale machines, it becomes important to pro-
vide data management solutions that do not solely focus on pure performance, but
address performance variability as well. Addressing this variability is indeed the key
to ensure that each and every component of these future platforms is optimally used.

To address these challenges, we have proposed a new system for I/O and data man-
agement called Damaris. Damaris leverages dedicated I/O cores on each multicore
SMP (Symmetric multiprocessing) node, along with the use of shared memory, to effi-
ciently perform asynchronous data processing I/O and in situ visualization. We picked
this approach based on the intuition that the usage of dedicated cores for I/O-related
tasks combined with the usage of intranode shared memory can help overlapping I/O
with computation, but also lowering the pressure on the storage system by reducing
the number of files to be stored and, at the same time, the amount of data. Such dedi-
cated resources can indeed perform data aggregation, filtering or compression, all in an
asynchronous manner. Moreover, such dedicated cores can further be leveraged to en-
able non-intrusive in situ data visualization with optimized resource usage. Damaris’
only overhead results from removing computation resources from the simulation. Yet
as we move towards post-petascale and exascale machines, the growing number of
cores per node makes it computationally affordable to remove one or a few core from
the computation for the purpose of managing data. Besides, our experiments show that
this overhead is largely counterbalanced by the performance gain of overlapping I/O
with computation.

Some of these aspects of the Damaris approach have been introduced in previous
conference papers [Dorier et al. 2012a; Dorier et al. 2013]. This paper aims to provide
a comprehensive, global presentation and discussion of the Damaris approach in its
current state and of its evaluation and applications.
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We evaluated Damaris on three different platforms including the Kraken Cray XT5
supercomputer [NICS 2015], with the CM1 atmospheric model [Bryan and Fritsch
2002] and the Nek5000 [P. F. Fischer and Kerkemeier 2008] computational fluid dy-
namics code. By overlapping I/O with computation and by gathering data into large
files while avoiding synchronization between cores, our solution brings several bene-
fits: (1) it fully hides the jitter as well as all I/O-related costs, which makes the sim-
ulations performance predictable; (2) it substantially increases the sustained write
throughput (by a factor of 15 in CM1, 4.6 in Nek5000) compared with standard ap-
proaches; (3) it allows almost perfect scalability of the simulation (up to over 9,000
cores with CM1 on Kraken), as opposed to state-of-the-art approaches (file-per-process
and collective I/O), which fail to scale in the CM1 application with as few as a few hun-
dreds of cores (see Section 4; (4) it enables data compression without any additional
overhead, leading to a major reduction of storage requirements.

Furthermore, we extended Damaris with Damaris/Viz, an in situ visualization
framework based on the Damaris approach. By leveraging dedicated cores, external
high-level structure descriptions and a simple API, our framework provides adaptable
in situ visualization to existing simulations at a low instrumentation cost. Results
obtained with the Nek5000 and CM1 simulations show that our framework can com-
pletely hide the performance impact of visualization tasks and the resulting run-time
variability. In addition, the proposed API allows efficient memory usage through a
shared-memory-based, zero-copy communication model.

Finally, in order to compare the Damaris, dedicated-core-based approach with other
approaches such as dedicated nodes, forwarding nodes, and staging areas, we further
extended Damaris to support the use of dedicated nodes as well. We leverage again the
CM1 and Nek5000 simulations on Grid’5000, the national French grid testbed, to shed
light on the conditions under which a dedicated-core-based approach to I/O is more
suitable than a dedicated-node-based one, and vice versa.

To the best of our knowledge, Damaris is the first open-source middleware to enable
the use of dedicated cores or/and dedicated nodes for data management tasks ranging
from storage I/O to complex in situ visualization scenarios.

The rest of this paper is organized as follows: Section 2 presents the background
and motivation for our work, discusses the limitations of current approaches to I/O
and to in situ visualization. Our Damaris approach, including its design principles,
implementation detail and use cases, is described in Section 3. We evaluate Damaris
in Section 4, first in scenarios related to storage I/O, then in scenarios related to in situ
visualization. Our experimental evaluation continues in Section 5 with a comparison
between dedicated cores and dedicated nodes in various situations. Section 6 discusses
our positioning with respect to related work and Section 7 summarizes our conclusions
and discusses open further directions.

2. BACKGROUND AND MOTIVATION
HPC simulations create large amounts of data that are then read offline by analysis
tools. In the following we present the traditional approaches to parallel I/O as well as
the problems they pose in terms of performance variability. We then dive into the trend
toward coupling simulations with analysis and visualization tools, going from offline
to in situ analysis and visualization.

2.1. I/O and Storage for Large-Scale HPC Simulations
Two I/O approaches have been traditionally used for performing I/O in large-scale
simulations.
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Fig. 1: Variability across processes and across I/O phases in the IOR benchmark using a file-per-process
approach on Grid’5000’s Rennes site [Grid’5000 2015], with a PVFS2 [Carns et al. 2000] file system. Each
graph represents a write phase. The 576 processes are sorted by write time on the y axis and an horizontal
line is draw with a length proportional to this write time. These graphs are normalized so that the longest
write time spans the entire graph horizontally. Each graph is colored according to a scale that gives the
aggregate throughput of the phase, that is, the total amount of data written divided by the write time of the
slowest process.2

The File-per-process. approach consists of having each process access its own file.
This reduces possible interference between the I/O of different processes, but in-
creases the number of metadata operations. This is especially a problem for file
systems with a single metadata server, such as Lustre [Donovan et al. 2003]. It is
also hard to manage the large number of files thus created and have them read by
analysis or visualization codes that use a different number of processes
Collective I/O. leverages communication phases between processes to aggregate ac-
cess requests and reorganize them. These operations are typically used when sev-
eral processes need to access different parts of a shared file, and benefit from tight
interactions between the file system and the MPI-I/O layer in order to optimize the
application’s access pattern [Prost et al. 2001].

2.1.1. Variability in Traditional I/O Approaches. The periodic nature of scientific simula-
tions, which alternate between computation and I/O phases, leads to burst of I/O ac-
tivity. The overlap between computation and I/O is reduced, so that both the compute
nodes and the I/O subsystem may be idle for periods of time.

With larger machines, the higher degree of I/O concurrency between processes of
a single application or between concurrent applications pushes the I/O system to its
limits. This leads to a substantial variability in I/O performance. Reducing or hiding
this variability is critical, as it is an effective way to make a more efficient use of these
new computing platforms through improved predictability of the behavior and of the
execution time of applications.

Figure 1 illustrates this variability with the IOR application [Shan and Shalf 2007],
a typical benchmark used to evaluate the performance of parallel file systems with pre-
defined I/O patterns. It shows that even with very well optimized I/O (each process here
writes the same amount of data contiguously in a separate file using large requests
that match the file system’s distribution policy) there is a large difference in the time
taken by each process to complete its I/O operations within a single I/O phase and
also across I/O phases. Since during these I/O phases all processes have to wait for
the slowest one before resuming computation, this I/O variability leads to a waste of
performance and to unpredictable overall run times. I/O variability is therefore a key
issue that we aim to address in this paper.

2.1.2. Causes and Effects of the I/O Variability. Skinner at al. [Skinner and Kramer 2005]
point out four causes of performance variability in supercomputers (here presented in
a different order).
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(1) Communication, causing synchronization between processes that run within the
same node or on separate nodes. In particular, network access contention causes
collective algorithms to suffer from variability in point-to-point communications.

(2) Kernel process scheduling, together with the jitter introduced by the operating
system.

(3) Resource contention within multicore nodes, caused by several cores accessing
shared caches, main memory and network devices.

(4) Cross-application contention, which constitutes a random variability coming from
simultaneous accesses to shared components of the computing platform, such as
the network or the storage system, by distinct applications.

Future systems will have additional sources of variability, such as power management,
and fault masking activities. Issues 1 and 2, respectively, cause communication and
computation jitter. Issue 1 can be addressed through more efficient network hardware
and collective communication algorithms. The use of lightweight kernels with less sup-
port for process scheduling can alleviate issue 2. Issues 3 and 4, on the other hand,
cause I/O performance variability.

At the level of a node, the increasing number of cores per node in recent machines
makes it difficult for all cores to access the network all at once with an optimal through-
put. Requests are serialized in network devices, leading to a different service time for
each core. This problem is further amplified by the fact that an I/O phase consists of
many requests that are thus serialized in an unpredictable manner.

Parallel file systems also represent a well-known bottleneck and a source of high
variability [Uselton et al. 2010]. The time taken by a process to write some data can
vary by several orders of magnitude from one process to another and from one I/O
phase to another depending on many factors, including (1) network contention when
several nodes send requests to the same I/O server [Dorier et al. 2014], (2) access con-
tention at the level of the file system’s metadata server(s) when many files are created
simultaneously [Dorier et al. 2012b], (3) unpredictable parallelization of I/O requests
across I/O servers due to different I/O patterns [Lofstead et al. 2010], (4) additional
disk-head movements due to the interleaving of requests coming from different pro-
cesses or applications [Gainaru et al. 2014]. Other source of I/O variability at disk
level include the overheads of RAID group reconstruction, data scrubbing overheads,
or various firmware activities.

Lofstead et al. [Lofstead et al. 2010] present I/O variability in terms of interference,
with the distinction between internal interference caused by access contention between
processes of the same application, and external interference that are due to sharing
the access to the file system with other applications, possibly running on different
clusters. While the sources of I/O performance variability are numerous and difficult
to track, we can indeed observe that some of them originate from contentions within a
single application, while other come from the contention between multiple applications
concurrently running on the same platform. The following section describes how to
tackle these two sources of contention.

2.1.3. Approaches to Mitigate the I/O Variability. While most efforts today address perfor-
mance and scalability issues for specific types of workloads and software or hardware
components, few efforts target the causes of performance variability. We highlight two
practical ways of hiding or mitigating the I/O variability.

2Due to the use of colors, this figure may not be properly interpretable if this document was printed in black
and white. Please refer to an electronic version.
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Asynchronous I/O. The main solution to prevent an application from being impacted
by its I/O consists of using asynchronous I/O operations, i.e., non-blocking operations
that proceed in the background of the computation.

The MPI 2 standard proposes rudimentary asynchronous I/O functions that aim
to overlap computation with I/O. Yet these functions are available only for indepen-
dent I/O operations. Besides, popular implementations of the MPI-I/O standard such
as ROMIO [Thakur et al. 1999b] actually implement most of these functions as syn-
chronous. Only the small set of functions that handle contiguous accesses have been
made asynchronous, provided that the backend file system supports it.

Released in 2012, the MPI 3 standard completes this interface with asynchronous
collective I/O primitives. Again, their actual implementation is mostly synchronous.
As of today, there is no way to leverage completely asynchronous I/O using only MPI-
I/O. Higher-level libraries such as HDF5 [HDF5 2015; Folk et al. 1999] or NetCDF
[Unidata 2015] have also no support yet for asynchronous I/O.

Dedicated I/O Resources. Over the past few years, dedicated I/O resources have been
proposed to address the limitation of MPI implementations in terms of asynchronous
I/O. These resources can take various forms. Explicit I/O threads [Fu et al. 2012] have
been used to achieve fully asynchronous I/O at the potential price of additional OS
jitter. Dedicated cores have been proposed to leverage a subset of cores in each multi-
core node used by the application [Dorier et al. 2012a; Li et al. 2010], and have them
perform I/O operations on behalf of the cores that run the application. Staging ar-
eas [Abbasi et al. 2009; Nisar et al. 2008; Prabhakar et al. 2011] is another approach
that usually consists of dedicated nodes deployed along with an application. Forward-
ing nodes [Ali et al. 2009; Stone et al. 2006] and burst buffers [Liu et al. 2012; Ma et al.
2006] consist of a set of nodes, independent of the applications and interposed between
the compute nodes and the storage system. These nodes may feature a larger memory
capacity than compute nodes, in the form of SSDs or NVRAMs.

This trend toward using dedicated resources has benefited the field of data analysis
and visualization as well, where dedicated cores or nodes are seen as new ways to effi-
ciently get access to simulations’ data as they are generated. The next section explores
this trend in more details.

2.2. Analysis and Visualization: an Overlooked Process
Data produced by HPC simulations can serve several purposes. One of them is fault
tolerance using a checkpoint/restart method. The other, and most important, is the
analysis and visualization of the simulated phenomenon. Analysis and visualization
are important components of the process that leads from running a simulation to ac-
tually discovering knowledge.

Given the increasing computation power in recent machines and the trend toward
using dedicated resources, it will become more and more common to couple the sim-
ulation with the analysis and visualization tools. Simulation/Visualization coupling
consists of making the simulation send its data directly to a visualization software in-
stead of storing it and processing it offline. This approach, termed in situ visualization
and illustrated in Figure 2 (b), has the advantage of bypassing the storage system and
producing results faster. It also allows scientists to control their simulations as they
run, efficiently overlapping simulation and knowledge discovery.

2.2.1. A Taxonomy of In Situ Visualization Methods. Several in situ visualization strategies
exist that we separate into two main categories –tightly coupled and loosely coupled–
depending on where visualization tasks run.
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(a) Traditional Scientific Workflow (b) Coupling Simulation/Visualization

Fig. 2: Two approaches to retrieve insight from large-scale simulations: (a) the traditional approach of stor-
ing data in a parallel file system and reading it offline, (b) the new trend towards simulation/visualization
coupling.

Tightly-Coupled In Situ Visualization. In a tightly-coupled scenario, the analysis
and visualization codes run on the same node as the simulation and share its re-
sources. The main advantage of this scenario is the proximity to the data, which can be
retrieved directly from the memory of the simulation. Its drawback lies in the impact
that such analysis and visualization tasks can have on the performance of the simula-
tion and on the variability of its run time. Within this category, we make a distinction
between time partitioning and space partitioning.

Time-partitioning visualization consists of periodically stopping the simulation to
perform visualization tasks. This is the most commonly used method. For example, it
is implemented in VisIt’s libsim library [Whitlock et al. 2011] and ParaView’s Catalyst
library [Fabian et al. 2011; Johnston 2014].

In a space-partitioning mode, dedicated cores perform visualization in parallel with
the simulation. This mode poses challenges in efficiently sharing data between the
cores running the simulation and the cores running the visualization tasks, as these
tasks progress in parallel. It also reduces the number of cores available to the simula-
tion.

Loosely-Coupled In Situ Visualization. In a loosely coupled scenario, analysis and vi-
sualization codes run on a separate set of resources, that is, a separate set of nodes lo-
cated either in the same supercomputer as the simulation [Zheng et al. 2010; Rasquin
et al. 2011], or in a remote cluster [Malakar et al. 2010]. The data is sent from the
simulation to the visualization nodes through the network.

Some in situ visualization frameworks such as GLEAN [Hereld et al. 2011] can be
considered hybrid, placing some tasks close to the simulation in a time-partitioning
manner while other tasks run on dedicated nodes.

2.2.2. From Offline to In Situ Visualization: Another Source of Variability. The increasing
amounts of data generated by scientific simulations also leads to performance degra-
dations when it comes to reading back data for analysis and visualization [Childs et al.
2010; Yu and Ma 2005]. While I/O introduces run time variability, in situ analysis and
visualization can also negatively impact the performance of the simulation/visualiza-
tion complete workflow. For instance, periodically stopping the simulation to perform
in situ visualization in a time-partitioning manner leads to a loss of performance and
an increase of run-time variability. Contrary to the performance of the simulation it-
self, the performance of visualization tasks may depend on the content of the data,
which makes the rendering tasks imbalanced across processes and across iterations.
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This variability is further amplified if the in situ visualization framework is interac-
tive, in which case the user himself impacts the performance of his application.

In a loosely-coupled approach to in situ visualization, sending data through the net-
work potentially impacts the performance of the simulation and forces a reduced num-
ber of nodes to sustain the input of a large amount of data. Transferring such large
amounts of data through the network also have a potentially larger impact on the
simulation than running visualization tasks in a tightly-coupled manner.

2.3. Our Vision: Using Dedicated Cores for I/O and In Situ Visualization
Despite the limitations of the traditional, offline approach to data analysis and visual-
ization, users are still seldom moving to purely in situ visualization and analysis [Yu
et al. 2010; Ma et al. 2007; Ma 2009]. The first reason is the development cost of such a
step in large codes that were maintained for decades. The second reason is that storage
I/O is still required for checkpoint-based fault tolerance, which makes offline analysis
of checkpoints the natural candidate for scientific discovery.

To push further the adoption of in situ visualization and increase the productivity of
the overall scientific workflow, we postulate that a framework should be provided that
deals with all aspects of Big Data management in HPC simulations, including efficient
I/O but also in situ processing, analysis and visualization of the produced data. Such a
framework can at the same time provide efficient storage I/O for data that need to be
stored, and efficient in situ visualization to speed up knowledge discovery and enable
simulation monitoring.

Over the past 4 years we have been addressing this challenge by proposing, design-
ing and implementing the Damaris system to data management. Damaris proposes to
dedicate cores in multicore nodes for any type of data management task, including I/O
and in situ visualization. We tried to make Damaris simple to use, flexible, portable
and efficient in order to ease its adoption by the HPC community. The following section
gives an overview of this approach and its implementation.

3. THE DAMARIS APPROACH: AN OVERVIEW
In order to address both I/O and in situ analysis/visualization issues, we propose to
gather the I/O operations into a set of dedicated cores in each multicore node. These
cores (typically one per node) are dedicated to data management tasks (i.e., they do
not run the simulation code) in order to overlap writes and analysis tasks with com-
putation and avoid contention for accesses to the file system. The cores running the
simulation and the dedicated cores communicate data through shared memory. We
call this approach Damaris. Its design, implementation and API are described below.

3.1. Design Principles
The Damaris approach is based on four main design principles.

3.1.1. Dedicated Cores. The Damaris approach is based on a set of processes running
on dedicated cores in every multicore node. Each dedicated core performs in situ pro-
cessing and I/O in response to user-defined events sent by the simulation. We call a
process running the simulation a client, and a process running on a dedicated core a
server. One important aspect of Damaris is that dedicated cores do not run the simu-
lation. This gives dedicated core more freedom in scheduling there data management
tasks or add additional processing tasks such as compressions. Such optimizations are
discussed in Section 4.1.6.

With the current trend in hardware solutions, the number of cores per node in-
creases. Thus dedicating one or a few cores has a diminishing impact on the perfor-
mance of the simulation. Hence, our approach primarily targets SMP nodes featur-
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ing a large number of cores per node: 12 to 24 in our experiments. This arrangement
might be even more beneficial in future systems, for a variety of reasons: The number
of cores increasing, neither memory bandwidth nor power constraints may allow all
cores to run compute-intensive code; and reduced switching between different types of
executions improves performance.

3.1.2. Data Transfers through Shared Memory. Damaris handles large data transfers from
clients to servers through shared memory. This makes a write as fast as a memcpy and
also enables direct allocation of variables within the shared memory. This option is
especially useful to reduce the memory requirements of in situ visualization tasks,
which can directly access the memory of the simulation without requiring a copy (see
our previous work [Dorier et al. 2013]).

3.1.3. High-Level Data Abstraction. Clients write enriched datasets in a way similar to
scientific I/O libraries such as HDF5 or NetCDF. That is, the data output by the simu-
lation is organized into a hierarchy of groups and variables, with additional metadata
such as the description of variables, their type, unit, and layout in memory. The dedi-
cated cores thus have enough knowledge of incoming datasets to write them in existing
high-level formats. This design principle differs from other approaches that capture
I/O operations at a lower level [Li et al. 2010; Ma et al. 2006]. These approaches in-
deed lose the semantics of the data being written. While our design choice forces us
to modify the simulation so that it writes its data using Damaris’ API, it allows for
implementing semantic-aware data processing functionalities in dedicated cores. In
particular, keeping this level of semantics is mandatory in order for dedicated cores to
be able to write data in a standard, high-level format such as HDF5 or NetCDF, or to
feed an in situ visualization pipeline.

3.1.4. Extensibility through Plugins. Servers can perform data transformations prior to
writing them, as well as analysis and visualization. One major design principle in the
Damaris approach is the possibility for users to provide these transformations through
a plugin system, thus adapting Damaris to the particular requirements of their appli-
cation. Implementing such a plugin system at a lower level would not be possible, as it
would not have access to the high-level information about the data (e.g., dimensions of
arrays, data types, physical meaning of the variable within the simulation, etc.).

3.2. Architecture
Figure 3 presents the software architecture underlying the Damaris approach. While
Damaris can dedicate several cores in large multicore nodes, only one client and one
server are represented here.

Damaris has been designed in a highly modular way and features a number of
decoupled, reusable software components. The Shared Memory component handles
the shared buffer and ensures the safety of concurrent allocations/deallocations. The
Distributed Reactor handles communications between clients and servers, and across
servers. The Metadata Manager stores high-level information related to the data be-
ing transferred (type, size, layout, etc.). Finally the Plugin Manager on the server side
loads and runs user-provided plugins.

This modular architecture greatly simplified the adaptation to several HPC plat-
forms and simulations, as well as the development of extensions to support various
scenarios such as storage, in situ visualization, data compression or I/O scheduling.
The following sections describe each component in more detail.

3.2.1. Shared Memory. Data communications between the clients and the servers
within a node are performed through the Shared Memory component. A large memory
buffer is created on each node by the dedicated cores at start time, with a size set by
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Fig. 3: Software architecture of the implementation of Damaris.

the user (typically several MB to several GB). Thus the user has full control over the
resources allocated to Damaris. When a client submits new data, it reserves a segment
of this shared-memory buffer. It then copies its data using the returned pointer so that
the local memory can be reused.

3.2.2. Distributed Reactor. The Distributed Reactor is the most complex component of
Damaris. It builds on the Reactor design pattern [Schmidt 1995] to provide the means
by which different cores (clients and servers) communicate through MPI. Reactor is a
behavioral pattern that handles requests concurrently sent to an application by one or
more clients. The Reactor asynchronously listens to a set of channels connecting it to
its clients. The clients send small events that are associated with event handlers (i.e.,
functions) in the Reactor. A synchronous event demultiplexer is in charge of queuing
the events received by the Reactor and calling the appropriate event handlers. While
clients communicate data through shared memory, they use the Distributed Reactor,
based on MPI, to send short notifications that either new data is available in shared
memory, or that a plugin should be triggered.

Contrary to a normal Reactor design pattern (as used in Boost.ASIO3 for example),
our Distributed Reactor also provides elaborate collective operations.

Asynchronous atomic multicast:. A process can broadcast an event to a group of
processes at once. This operation is asynchronous, that is, the sender does not wait
for the event to be processed by all receivers to resume its activity. A receiver only
processes the event when all other receivers are ready to process it as well. It is also
atomic, that is, if two distinct processes broadcast a different event, the Distributed
Reactor ensures that all receivers will handle the two events in the same order.
Asynchronous atomic labeled barrier:. We call a “labeled” barrier across a set of
processes a synchronization barrier associated with an event (its label). After all
processes reach the barrier, they all invoke the event handler associated with the

3See http://www.boost.org/
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event. This ensures that all processes agree to execute the same code at the same
logical time. This primitive is asynchronous: it borrows its semantics from MPI 3’s
MPI Ibarrier non-blocking barrier. It is atomic according to the same definition as
the asynchronous atomic multicast.

These two distributed algorithms are important in the design of in situ processing
tasks that include communications between servers. In particular, they ensure that
plugins will be triggered in the same order in all servers, allowing collective communi-
cations to safely take place within these plugins.

3.2.3. Metadata Manager. The Metadata Manager component keeps information re-
lated to the data being written, including variables, layouts (describing the type and
shape of blocks of data), parameters, etc. It is initialized using an XML configuration
file.

This design principle is inspired by ADIOS [Lofstead et al. 2008] and other tools
such as EPSN [Esnard et al. 2006]. In traditional data formats such as HDF5, several
functions have to be called by the simulation to provide metadata information prior to
actually writing data. The use of an XML file in Damaris presents several advantages.
First, the description of data provided by the configuration file can be changed without
changing the simulation itself, and the amount of code required to use Damaris in a
simulation is reduced compared to existing data formats. Second, it prevents clients
from transferring metadata to dedicated cores through shared memory. Clients com-
municate only data along with the minimum information required by dedicated cores
to retrieve the full description in their own Metadata Manager.

Contrary to the XDMF format [KitWare 2015a], which leverages XML to store sci-
entific datasets along with metadata (or points to data in external HDF5 files), our
XML file only provides metadata related to data produced by the simulation. It is not
intended to be an output format, or become part of one.

3.2.4. Plugin Manager. The Plugin Manager is the component that loads and stores
plugins. Plugins are pieces of C++ or Python codes provided by the user. The Plu-
gin Manager is capable of loading functions from dynamic libraries or scripts as well
as from the simulation’s code itself. It is initialized from the XML configuration file.
Again, the use of a common configuration file between clients and servers allows dif-
ferent processes to refer to the same plugin through an identifier rather than its full
name and attributes.

A server can call a plugin when it receives its corresponding event, or wait for all
clients in a node or in the entire simulation to have sent the event. In these later cases,
the collective algorithms provided by the Distributed Reactor ensure that all servers
call the plugins in the same order.

3.3. Implementation
The Damaris approach is intended to be the basis for a generic, platform-independent,
application-independent, easy-to-use tool. This section describes its main API and pro-
vides some technical details of its implementation.

3.3.1. Client API. Our implementation provides client-side interfaces for C, C++ and
Fortran applications written with MPI. While the full API of Damaris can be found in
its user guide,4 we present some of its main functions hereafter.

4http://damaris.gforge.inria.fr/doc/DamarisUserManual-1.0.pdf
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(a) After damaris alloc (b) After damaris commit (c) After damaris clear

Fig. 4: Semantics of the three functions: (a) at iteration n, a segment is allocated for a given variable through
damaris alloc, the simulation holds it. (b) Eventually, a call to damaris commit by the client notifies the
dedicated core of the location of the data. From then on, the segment can be read by both processes (client
and server), but should not be written or deleted by either of them. Finally, (c) a call to damaris clear
indicates that the simulation does not need the segment anymore, dedicated cores can modify it, delete it or
move it to a persistent storage.

Initializing/finalizing. Initializing and finalizing Damaris is done through calls to
damaris initialize("config.xml") and damaris finalize(), which have to be called
respectively at the beginning and at the end of a simulation.

Writing data. damaris write("var name",data) copies the data in shared memory
along with minimal information, and notifies the server on the same node that new
data is available. All additional information such as the size of the data and its layout
can be found by the servers in the configuration file.

Directly accessing the shared memory. Another way to transfer data from clients to
dedicated cores is to directly allocate variables in shared memory and notify the dedi-
cated cores when the data will not be subject to further modifications, at which point
the server can start processing it. This is done using the damaris alloc("variable"),
damaris commit("variable"), and damaris clear("variable") functions. Figure 4
provides the semantics of these functions.

As shown in our previous work [Dorier et al. 2013], Damaris requires only limited
code modifications in existing simulations, and is less intrusive than existing in situ
visualization interface on this respect.

3.3.2. Memory management. As explained above, Damaris uses a fixed-size buffer to
hold data transfered from clients to dedicated cores. If post-processing tasks in dedi-
cated cores are too slow to cope with the rate at which data is produced by the simula-
tion, it may happen that the buffer becomes full. In this situation, we considered two
options. The first one consists of blocking the simulation until dedicated cores have
freed enough memory. The second one consists of have future write calls fail without
blocking the simulation. This later solution was preferred by the domain scientists
with whom we discussed.

3.3.3. Technical Implementation Details. Damaris leverages the Boost.Interprocess li-
brary5 to implement several versions of the Shared Memory component, suitable for
different platforms.

Our implementation of the Distributed Reactor relies on MPI 2 communication prim-
itives and, in particular, non-blocking send and receive operations. Events are simply
implemented as 0-byte messages with the MPI tag carrying the type of the event. Since
the MPI 3 standard provides new non-blocking collective functions such as MPI Ireduce

5See http://www.boost.org/
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or MPI Ibarrier, our Distributed Reactor could be easily re-implemented with these
MPI 3 functions without any impact on the rest of Damaris’ implementation.

Finally we used Model-Driven Engineering (MDE) techniques to implement the
Metadata Manager. Most of the source code of the Metadata Manager is indeed au-
tomatically generated from an XSD metamodel. This metamodel describes the con-
cepts of variables, layouts, etc. as well as their relations to one another and how they
are described in an XML format. The XSD file is used to synthesize C++ classes that
correspond to the metamodel.

3.4. Managing Data with Damaris
Damaris is not a data format. It only provides a framework to dedicate cores for custom
data processing and I/O tasks, to transfer data through shared memory and to call
plugins. Thanks to its plugin system, Damaris can be adapted to many scenarios of in
situ data processing. In this paper, we specifically use it to periodically write data and
to perform in situ visualization.

3.4.1. Writing Data. We implemented a plugin that gathers data from client cores and
writes them into HDF5 files. Each server running on a dedicated core produces a single
file per iteration. Compared with the file-per-process approach, this way of writing
produces fewer, bigger files, thus mitigating the bottleneck in metadata servers when
files are created. Writing from a reduced number of writers also has the advantage of
limiting network access contention across the cores of the same node. Finally, issuing
bigger writes to the file system usually allows for better performance. Compared with
the collective I/O approach, our writer plugin does not require synchronization between
processes.

3.4.2. Visualizing and Analyzing. The high-level data description provided by Damaris
enables a connection with existing visualization and analysis packages, including
VisIt [LLNL 2015] or ParaView [KitWare 2015b], in order to build a full in situ vi-
sualization framework. Both VisIt and ParaView perform in situ visualization from
in-memory data. Given that each of these software has strengths, a major advantage
of our approach is the ability to switch between them with no code modification in the
simulation.

We leveraged the XSD-based metadata management in Damaris to provide the nec-
essary information to bridge simulations to existing visualization software. By inves-
tigating the in situ interfaces of different visualization packages including ParaView,
VisIt, ezViz [ERDC DSRC 2015] and VTK [Schroeder et al. 2000], we devised a generic
description of visualizable structures such as meshes, points or curves. Additionally,
the Distributed Reactor enables synchronization between dedicated cores, which is
necessary to run the parallel rendering algorithms implemented by the aforemen-
tioned visualization software.

4. EVALUATION
We evaluated Damaris with the CM1 atmospheric simulation [Bryan and Fritsch
2002] and ANL’s Nek5000 CFD solver [P. F. Fischer and Kerkemeier 2008], on sev-
eral platforms: NICS’s Kraken [NICS 2015], three clusters of the French Grid’5000
platform [Grid’5000 2015], NCSA’s BluePrint cluster and the Blue Waters supercom-
puter [NCSA 2015]. In the following, we first evaluate Damaris in the context of im-
proving I/O performance by hiding the I/O variability. We then evaluate the use of
Damaris for several other data management tasks, including data compression, I/O
scheduling and in situ visualization.
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4.1. Addressing the I/O Bottleneck with Damaris
In this first evaluation part, we show how Damaris is used to improve I/O performance.

4.1.1. Description of the Applications. The following applications were used in our exper-
iments.

. CM1 (Cloud Model 1) is used for atmospheric research and is suitable for mod-
eling small-scale atmospheric phenomena such as thunderstorms and tornadoes.
It follows a typical behavior of scientific simulations, which alternate computation
phases and I/O phases. The simulated domain is a regular 3D grid representing
part of the atmosphere. Each point in this domain is characterized by a set of
variables such as local temperature or wind speed. CM1 is written in Fortran 90.
Parallelization is done using MPI, by distributing the 3D array along a 2D grid of
equally-sized subdomains, each of which is handled by a process. The I/O phase
leverages either HDF5 to write one file per process, or pHDF5 [Chilan et al. 2006]
to write in a shared file in a collective manner. One of the advantages of using a
file-per-process approach is that compression can be enabled, which cannot be done
with pHDF5. However, at large process counts, the file-per-process approach gen-
erates a large number of files, making all subsequent analysis tasks intractable.
. Nek5000 is a computational fluid dynamics solver based on the spectral element
method. It is actively developed at ANL’s Mathematics and Computer Science Di-
vision. It is written in Fortran 77 and solves its governing equations on an un-
structured mesh. This mesh consists of multiple elements distributed across pro-
cesses; each element is a small curvilinear mesh. Each point of the mesh carries the
three components of the fluid’s local velocity, as well as other variables. We chose
Nek5000 for this particular meshing structure, different from CM1, and for the
fact that it is substantially more memory-hungry than CM1. We modified Nek5000
in order to pass the mesh elements and fields data to Damaris.
Nek5000 takes as input the mesh on which to solve the equations, along with ini-
tial conditions. We call this set a configuration. In our experimental evaluation, we
used the MATiS configuration, which was designed to run on 512 to 2048 cores.
Another configuration, turbChannel, is used in Section 4.2 to evaluate in situ visu-
alization. This configuration was designed to run on 32 to 64 cores.

4.1.2. Platforms and Configurations. With the CM1 application, our goal was to opti-
mize CM1’s I/O for future use on the upcoming Blue Waters Petascale supercomputer.
Therefore we started with NCSA’s IBM Power5 BluePrint platform as it was supposed
to be representative of Blue Waters’ hardware. On this platform, we evaluated the
scalability of the CM1 application with respect to the size of its output, with the file-
per-process and Damaris approaches. We then experimented on the parapluie cluster
of Grid’5000’s Rennes site. This cluster features 24-core nodes, which makes it very
suitable to our approach based on dedicated cores. We then moved our experiments
to NICS’s Kraken supercomputer, which, in addition to allowing runs at much larger
scales, has a hardware configuration very close to that of Blue Waters’ final design.

With Nek5000, our goal was to confirm the usability of Damaris with a more
memory-hungry application. We completed our experimentation on the stremi cluster
of Grid’5000’s Reims site, which provides the same type of hardware as the parapluie
cluster, but a different network. All these platforms are detailed hereafter, along with
the configuration of CM1 and Nek5000 we used.
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. BluePrint is a test platform used at NCSA until 2011 when IBM was still
in charge of delivering the Blue Waters supercomputer.6 BluePrint features 120
Power5 nodes. Each node consists of 16 cores and includes 64 GB of memory. As for
its file system, GPFS is deployed on 2 I/O servers. CM1 was run on 64 nodes (1024
cores), with a 960⇥ 960⇥ 300-point domain. Each core handles a 30⇥ 30⇥ 300-point
subdomain with the standard approaches, that is, when no dedicated cores are
used. When dedicating one core out of 16 on each node, computation cores handle
a 24 ⇥ 40 ⇥ 300-point subdomain. On this platform we vary the number of vari-
ables that CM1 writes, resulting in different sizes of the output. We enabled the
compression feature of HDF5 for all the experiments done on this platform.
. Grid’5000 is a French grid testbed. We use its parapluie cluster on the Rennes
site and its stremi cluster on the Reims site. On the Rennes site, the parapluie
cluster featured 40 nodes of 2 AMD 1.7 GHz CPUs, 12 cores/CPU, 48 GB RAM.
We run CM1 on 28 nodes (672 cores) and 38 nodes (912 cores). We deployed a
PVFS file system on 15 separate I/O servers (2 Intel 2.93 GHz CPUs, 4 cores/CPU,
24 GB RAM, 434 GB local disk). Each PVFS node was used both as I/O server
and metadata server. All nodes (including the file system’s) communicate through
a 20G InfiniBand 4x QDR link connected to a common Voltaire switch. We use
MPICH [ANL 2015] with ROMIO [Thakur et al. 1999a] compiled against the PVFS
library, on a Debian Linux operating system. The total domain size in CM1 is 1104⇥
1120 ⇥ 200 points, so each core handles a 46 ⇥ 40 ⇥ 200-point subdomain with a
standard approach, and a 48⇥ 40⇥ 200-point subdomain when one core out of 24 is
used by Damaris.
On the Reims site the stremi cluster features the same type of node as the para-
pluie cluster. We run Nek5000 on 30 nodes (720 cores). We deploy PVFS on 4 nodes
of the same cluster. Each PVFS node is used both as I/O server and metadata
server. All nodes communicate through a 1G Ethernet network. We use the MA-
TiS configuration of Nek5000, which contains 695454 elements (small 4 ⇥ 2 ⇥ 4
curvilinear sub-meshes). These elements are distributed across available simula-
tion processes. Thus the total number of elements (and thus the total amount of
data output) does not vary whether we use dedicated cores or not. When no dedi-
cated cores are used, each core handles 965 or 966 such elements. When dedicating
one core out of 24, each simulation core handles 1007 or 1008 elements.
. Kraken was a supercomputer deployed at the National Institute for Computa-
tional Sciences (NICS). It was ranked 11th in the Top500 [Top500 2015] at the
time of the experiments, with a peak Linpack performance of 919.1 Teraflops. It
featured 9408 Cray XT5 compute nodes connected through a Cray SeaStar2+ in-
terconnect and running Cray Linux Environment (CLE). Each node has 12 cores
and 16 GB of local memory. Kraken provided a Lustre file system using 336 block
storage devices managed by 48 I/O servers and one metadata server.
On this platform, we studied the weak scalability of the file-per-process, collective
I/O and Damaris approaches in CM1, that is, we measured how the run time varies
with a fixed amount of data per node. When all cores in each node are used by
the simulation, each client process handles a 44⇥ 44⇥ 200-point subdomain. Using
Damaris, each client process (11 per node) handles a 48⇥44⇥200-point subdomain,
which makes the total problem size the same for a given total number of cores.

4.1.3. How Damaris Affects the I/O Variability.

6As IBM terminated its contract with NCSA in 2011 and Blue Waters was finally delivered by Cray,
BluePrint was later decommissioned and replaced with a test platform, JYC, matching the new Blue Waters’
design.
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Fig. 5: Duration of a write phase of CM1 on Kraken
(average and maximum) from the point of view of
the simulation. For readability reasons we do not
plot the minimum write time. Damaris shows to
completely remove the I/O variability while file-
per-process and collective-I/O have a big impact on
the run-time predictability.
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Impact of the Number of Cores on the I/O Variability. We studied the impact of the
number of cores on the simulation’s write time with the three I/O approaches: file-per-
process, collective I/O, and Damaris. To do so, we ran CM1 on Kraken with 576, 2304,
and 9216 cores.

Figure 5 shows the average and maximum duration of an I/O phase on Kraken from
the point of view of the simulation. It corresponds to the time between the two barriers
delimiting the I/O phase. This time is extremely high and variable with Collective
I/O, achieving more than 800 seconds on 9216 cores. The average of 481 seconds still
represents about 70% of the overall simulation’s run time.

By setting the stripe size to 32 MB instead of 1 MB in Lustre, the write time went
up to 1600 seconds with a collective I/O approach. This shows that bad choices of file
system’s configuration can lead to extremely poor I/O performance. Yet it is hard to
know in advance the configuration of the file system and I/O libraries that will lead to
a good performance.

The file-per-process approach appears to lead to a lower variability, especially at
large process count, and better performance than collective I/O. Yet it still represents
an unpredictability (difference between the fastest and the slowest phase) of about ±17
seconds. For a one month run, writing every 2 minutes would lead to an uncertainty of
several hours to several days of run time.

When using Damaris, we dedicate one core out of 12 on each node, thus potentially
reducing the computation performance for the benefit of I/O efficiency (the impact on
overall application performance is discussed in the next section). As a means to reduce
the I/O variability, this approach is clearly effective: the time to write from the point
of view of the simulation is cut down to the time required to perform a series of copies
in shared memory. It leads to an apparent write time of 0.2 seconds (as opposed to
the 481 seconds of collective I/O!) and does not depend anymore on the number of
processes. The variability is in order of ±0.1 seconds (too small to be seen on the figure).

Impact of the Amount of Data on the I/O Variability. On BluePrint, we vary the
amount of data. We aim to compare the file-per-process approach with Damaris with
respect to different output sizes. The results are reported in Figure 6. As we increase
the amount of data, the variability of the I/O time increases with the file-per-process
approach. With Damaris however, the write time remains in the order of 0.2 seconds
for the largest amount of data and the variability in the order of ±0.1 seconds again.
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Fig. 6: Duration of a write phase of CM1 on 1024
cores on BluePrint (average, maximum and min-
imum) using file-per-process and Damaris. The
amount of data is given in total per write phase.

Note that on this platform, data compression was enabled. Thus the observed vari-
ability comes not only from the bottleneck at the file system level, but also from the
different amounts of data that are written across processes and across iterations. This
illustrates the fact that I/O variability does not only comes from the variability of per-
formance of data transfers and storage, but also on any pre-processing task occurring
before the actual I/O. Damaris is therefore able to hide this pre-processing variability
as well.

Impact of the Hardware. We studied the impact of the hardware on the I/O variabil-
ity using Grid’5000’s parapluie and stremi clusters. With the large number of cores per
node (24) in these clusters as well as a network has substantially lower performance
than that of Kraken and BluePrint, we aim to illustrate the large variation of write
time across cores for a single write phase.

We ran CM1 using 672 cores on the parapluie cluster, writing a total of 15.8 GB
uncompressed data (about 24 MB per process) every 20 iterations. With the file-per-
process approach, CM1 reported spending 4.22% of its time in I/O phases. Yet the
fastest processes usually terminate their I/O in less than 1 second, while the slowest
take more than 25 seconds. Figure 7 (a) shows the CDF (cumulative distribution func-
tion) of write times for one of these write phases, with a file-per-process approach and
with Damaris.

Finally we ran Nek5000 using 720 cores on the stremi, writing a total of 3.5 GB per
iteration using a file-per-process approach. Figure 7 (b) shows the cumulative distri-
bution function of write time for one of these write phases with the file-per-process
approach and with Damaris.

In both simulations, we observe a large difference in write time between the fastest
and the slowest process with a file-per-process approach, due to access contention ei-
ther at the level of the network or within the file system. With Damaris however, all
processes complete their write at the same time. This is due to the absence of con-
tention when writing in shared memory.

Conclusion. Our experiments show that by replacing write phases with simple
copies in shared memory and by leaving the task of performing actual I/O to dedi-
cated cores, Damaris is able to completely hide the I/O variability from the point of
view of the simulation, making the application run time more predictable.

4.1.4. Application’s Scalability and I/O Overlap.
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(a) CM1 on Grid’5000 Rennes cluster
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Fig. 7: Cumulative distribution function of the write time across processes when running CM1 on 672 cores
of Grid’5000’s Rennes cluster and Nek5000 on 720 cores of the Reims cluster.

Fig. 8: Average overall run time of the CM1 sim-
ulation for 50 iterations and 1 write phase on
Kraken.
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Impact of Damaris on the Scalability of CM1. CM1 exhibits a very good weak scal-
ability and very stable performance when it does not perform any I/O. Thus, as we
increase the number of cores, the scalability becomes mainly driven by the scalability
of the I/O phases.

Figure 8 shows the application run time for 50 iterations plus one write phase.
The steady run time when no writes are performed illustrates this perfect scalabil-
ity. Damaris enables a nearly perfect scalability where other approaches fail to scale.
In particular, going from Collective I/O to Damaris leads to a 3.5⇥ speedup on 9216
cores.

I/O Overhead. Another way of analyzing the effect of dedicating cores to I/O is by
looking at the CPU hours wasted in I/O tasks. With a time-partitioning approach, this
overhead corresponds to the duration of a write phase (expressed in hours) multiplied
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Table I: I/O Overhead in CPU-hours

Cores Simulation without I/O File-per-process Collective-I/O Damaris

576 38.1 7.9 32.9 3.4

2304 152.5 89.2 203.3 13.8

9216 609.8 378.8 1244.3 54.5

CPU hours wasted in I/O tasks (including processes remaining idle waiting for de-
pendent tasks to complete), for 50 computation steps and 1 I/O phase of the CM1
application on Kraken. The “Simulation w/o I/O” column represents the CPU-hours
required by the simulation to complete the 50 computation steps at this scale.

by the total number of cores. With dedicated cores, this overhead corresponds to the du-
ration of the computation phase multiplied by the number of dedicated cores. Note that
this metrics does not take into account the effect of dedicating cores on the duration of
a computation phase, hence the need for the study of the impact on the application’s
scalability, conducted earlier.

Table I shows the CPU hours wasted in I/O tasks, when running CM1 for 50 com-
putation steps and 1 I/O phase. To put these numbers in perspective, the “Simulation
without I/O” column shows the CPU hours required by the simulation to complete the
50 iterations without any I/O and without any dedicated cores. It shows, for example,
that using a Collective-I/O approach on 9216 wastes 1244.3 CPU-hours, twice as much
as the CPU-hours required by the simulation at this scale. The CPU-hours wasted by
Damaris at this scale, on the other hand are as low as 54.5.

Idle Time in Damaris. Since the scalability of our approach comes from the fact that
I/O overlaps with computation, we still need to show that the dedicated cores have
enough time to perform the actual I/O while computation goes on.

Figure 9 shows the time used by the dedicated cores to perform the I/O on Kraken
and BluePrint with CM1, as well as the time they remain idle, waiting for the next
iteration to complete.

As the amount of data on each node is the same, the only explanation for the ded-
icated cores to take more time at larger process counts on Kraken is the access con-
tention for the file system. On BluePrint the number of processes is constant for each
experiment, thus the differences in write time come from the different amounts of
data. In all configurations, our experiments show that Damaris has much spare time,
during which dedicated cores remain idle. Similar results were obtained on Grid’5000.
While the idle time of the dedicated cores may seem to be a waste (provided that no in
situ data processing leverages it), it can reduce the energy consumption of the node;
this saving will be significant in future systems that will have sophisticated dynamic
power management.

With Nek5000, Figure 10 shows the cumulative distribution function (CDF) of the
time spent by dedicated cores writing. This time averages to 9.41 seconds, which rep-
resents 10% of overall run time. Thus, dedicated cores remain idle 90% of the time.
Additionally, this figure shows that the time spent by dedicated cores writing is stable
across iterations and across processes, with a standard deviation of 1.08 seconds. This
stability allows to add additional data processing tasks without worrying about the
possibility that dedicated cores spend an unpredictable time writing.

Conclusion. On all platforms, Damaris shows that it can fully overlap writes with
computation and still remain idle 75% to 99% of time with CM1 (see Figure 9), and
90% with Nek5000 (see Figure 10). Thus, without impacting the application, it be-
comes possible to further increase the frequency of output, or to perform additional
data processing operations such as in situ data analysis and visualization.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



A:20 M. Dorier et al.

 0

 50

 100

 150

 200

 250

 300

576 2304 9216

T
im

e
 (

se
c)

Number of Cores

Write Time
Idle Time

(a) Write / Idle Time on Kraken

 0

 50

 100

 150

 200

0.05 5.8 15.1 24.7

T
im

e
 (

se
c)

Data Size (GB)

Write Time
Idle Time

(b) Write / Idle Time on BluePrint

Fig. 9: Time spent by the dedicated cores writing data for each iteration. The spare time is the time dedicated
cores are not performing any task.

Fig. 10: CDF of the time spent by dedicated cores
writing (statistics across 11 iterations for 30 dedi-
cated cores), with Nek5000 on the Reims cluster of
Grid’5000.
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4.1.5. Aggregate I/O Throughput. We then studied the effect of Damaris on the aggregate
throughput observed from the computation nodes to the file system, that is, the total
amount of data output by the simulation (whether it is transfered directly to the file
system or goes through dedicated cores) divided by the amount of time it takes for this
data to be stored.

Figure 11 presents the aggregate throughput obtained by CM1 with the three ap-
proaches on Kraken. At the largest scale (9216 cores) Damaris achieves an aggre-
gate throughput about 6 times higher than the file-per-process approach, and 15 times
higher than collective I/O. The results obtained on 672 cores of Grid’5000 are presented
in Table II. The throughput achieved with Damaris here is more than 6 times higher
than the other two approaches. Since compression was enabled on BluePrint, we do not
provide the resulting throughputs, as it depends on the overhead of the compression
algorithm used and the resulting size of the data.
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Fig. 11: Average aggregate throughput achieved
by CM1 on Kraken with the different approaches.
Damaris shows a 6 times improvement over the
file-per-process approach and 15 times over Collec-
tive I/O on 9216 cores.

Table II: Average aggregate throughput (CM1)

Aggregate throughput
File-per-process 695 MB/s

Collective-I/O 636 MB/s
Damaris 4.32 GB/s

Average aggregate throughput on
Grid’5000’s parapluie cluster, with CM1
running on 672 cores.

Table III: Avg. aggregate throughput (Nek5000)

Aggregate throughput
File-per-process 73.5 MB/s

Damaris 337.6 MB/s

Average aggregate throughput on
Grid’5000’s stremi cluster, with Nek5000
running on 720 cores.

A higher aggregate throughput for the same amount of data represents a shorter
utilization time of the network and file system. It reduces the probability that the
simulation interfere with other applications concurrently accessing these shared re-
sources, in addition to potentially reducing their energy consumption.

With Nek5000 on the stremi cluster of Grid’5000, Table III shows that Damaris en-
ables a 4.6⇥ increase of throughput, going from 73.5 MB/s with the file-per-process
approach, to 337.6 MB/s with one dedicated core per node.

Conclusion. By avoiding process synchronization and access contention at the level
of a node and by gathering data into bigger files, Damaris reduces the I/O overhead,
effectively hides the I/O variability and substantially increases the aggregate through-
put, thus making a more efficient use of the file system.

4.1.6. Improvements: Leveraging the Spare Time. Section 4.1.4 showed that, with both ap-
plications, dedicated cores remain idle most of the time. In order to leverage the spare
time in dedicated cores, we implemented two improvements: compression, and trans-
fer delays. These improvements are evaluated hereafter in the context of CM1. Again
here, Damaris aggregates data to write one file per dedicated core.
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Fig. 12: Write time in the dedicated cores when en-
abling compression or transfer delays, with CM1 on
Grid’5000.
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Compression. We used dedicated cores to compress the output data prior to writing
it. Using lossless gzip compression, we observed a compression ratio of 1.87 : 1. When
writing data for offline visualization, atmospheric scientists can afford to reduce the
floating point precision to 16 bits, as it does not visually impact the resulting images.
Doing so leads to nearly 6 : 1 compression ratio when coupling with gzip. On Kraken,
the time required by dedicated cores to compress and write data was twice longer
than the time required to simply write uncompressed data. Yet contrary to enabling
compression in the file-per-process approach, the overhead and jitter induced by the
compression phase is completely hidden within the dedicated cores, and do not impact
the running simulation. In other words, compression is offered for free by Damaris.

Data Transfer Delays. Additionally, we implemented in Damaris the capability to
delay data movements. The algorithm is very simple and does not involve any com-
munication between processes: each dedicated core computes an estimated duration
of a simulation iteration by measuring the time between two consecutive calls to
damaris end iteration (about 230 seconds on Kraken). This time is then divided into
as many slots as there are dedicated cores. Each dedicated core waits for its slot be-
fore writing. This avoids access contention at the level of the file system. We evaluated
this strategy on 2304 cores on Kraken, the aggregate throughput reaches 13.1 GB/s on
average, instead of 9.7 GB/s when this algorithm is not used, which improves the file
system utilization and makes dedicated cores spare more time that can be leveraged
for other in situ processing tasks.

Summary. These two improvements have also been evaluated on 912 cores of
Grid’5000. All results are synthesized in Figure 12, which shows the average write
time in dedicated cores. The delay strategy reduces the write time in both platforms.
Compression however introduces an overhead on Kraken, thus we are facing a trade-
off between reducing the storage space used or reducing the spare time. A potential
optimization would be to enable or disable compression at run time depending on the
need to reduce write time or storage space.

4.2. Using Damaris for In Situ Visualization
Far from being restricted to performing I/O, Damaris can also leverage the high-
level description of data provided in its configuration file to feed in situ visualization
pipelines. In the following we evaluate such use of Damaris for in situ visualization.

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



Damaris: Addressing Performance Variability in Data Management for Post-Petascale SimulationsA:23

We highlight two aspects: scalability of the visualization algorithms when using dedi-
cated cores, and impact of in situ visualization on application run time.

4.2.1. Platforms and Configurations. We use again the CM1 and Nek5000 applications
presented in the previous sections, respectively on Blue Waters and Grid’5000. The
platforms and configurations of the experiments are described hereafter.

. Blue Waters Blue Waters [NCSA 2015] is a 13.3-petaflops supercomputer de-
ployed at NCSA. It features 26,864 nodes in 237 Cray XE6 cabinets and 44 Cray
XK7 cabinets, running Cray Linux Environment (CLE). We leveraged the XE6
nodes, each of which features 16 cores.

Methodology with CM1 on Blue Waters. CM1 requires a long run time before an in-
teresting atmospheric phenomenon appears, and such a phenomenon may not appear
at small scale. Yet contrary to the evaluation of I/O performance, we need visualiz-
able phenomena to appear in order to evaluate the performance of in situ visualization
tasks. Thus we first ran CM1 with the help of atmospheric scientists to produce rele-
vant data. We generated a representative dataset of 3840⇥ 3840⇥ 400 points spanning
several iterations.

We then extracted the I/O kernel from the CM1 code and built a program that re-
plays its behavior at a given scale and with a given resolution by reloading, redistribut-
ing and interpolating the precomputed data. The I/O kernel, identical to the I/O part of
the simulation, calls Damaris functions to transfer the data to Damaris. Damaris then
performs in situ visualization through a connection to VisIt’s libsim library [Whitlock
et al. 2011], either in a time-partitioning manner or using dedicated cores. Our goal
with CM1 is to show the interplay between the scalability of the visualization tasks
and the use of dedicated cores to run them.

Methodology with Nek5000 on Grid’5000. With Nek5000, we used the stremi clus-
ter of Grid’5000 already presented in the previous section. In addition to the MATiS
configuration, we also use the turbChannel configuration, which runs at smaller scales
and is more appropriate for interactive in situ visualization. Our goal with Nek5000
is to show the impact of in situ visualization on the variability of the application’s run
time.

Using Damaris in Time-Partitioning Mode. In order to compare the traditional
“time-partitioning” approach with the use of dedicated cores enabled by Damaris, we
added a time-partitioning mode in Damaris. This mode, which can be enabled through
the configuration file, prevents Damaris from dedicating cores, and runs all plugins
in a synchronous manner on all cores running the simulation. This mode allows us to
compare the traditional time-partitioning in situ visualization approach with the use
of dedicated cores without having to modify the simulations twice.

4.2.2. Impact of Dedicated Cores on the Scalability of Visualization Tasks. With CM1 on Blue
Waters, we measured the time (average of 15 iterations) to complete either an isosur-
face rendering or a ray casting rendering using time partitioning and dedicated cores
for each scenario. The comparative results are reported in Figure 14.

The isosurface algorithm (resulting image presented in Figure 13 (a)) scales well
with the number of cores using both approaches. A time-partitioning approach would
thus be appropriate if the user does not need to hide the run time impact of in situ
visualization. However, at the largest scale, the time to render from 400 dedicated
cores is 10.5 seconds while the rendering time on all 6400 cores is 3.2 seconds. In
terms of pure computational efficiency, an approach based on dedicated cores is thus
4.8 times more efficient.
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(a) CM1 Isosurface (b) CM1 Ray Casting (c) Nek5000 Isosurface

Fig. 13: Example results obtained in situ with Damaris: (a) 10-level isosurface of the DBZ variable on 6400
cores (Blue Waters). (b) Ray-casting of the dbz variable on 6400 cores (Blue Waters). (c) Ten-level isosurface
of the y velocity field in the TurbChannel configuration of Nek5000.
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Fig. 14: Rendering time using ray-casting and isosurfaces, with time-partitioning and dedicated cores with
CM1. Note that the number of cores represents the total number used for the experiments; using a dedicated-
core approach, 1/16 of this total number is effectively used for in situ visualization, which explains the overall
higher rendering time with dedicated cores.

The ray-casting algorithm (resulting image presented in Figure 13 (b)) on the other
hand has a poorer scalability. After decreasing, the rendering time goes up again at a
6400-core scale, and it becomes about twice more efficient to use a reduced number of
dedicated cores to complete this same rendering.

Conclusion. The choice of using dedicated cores versus a time-partitioning in situ
visualization approach depends on (1) the intended visualization scenario, (2) the scale
of the experiments and (3) the intended frequency of visual output. Our experiments
show that at small scale, the performance of rendering algorithms are good enough to
be executed in a time-partitioning manner, provided that the user is ready to increase
the run time of his simulation. At large scale however, it becomes more efficient to
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use dedicated cores, especially when using ray-casting, where the observed rendering
performance is substantially better when using a reduced number of processes.

4.2.3. Impact of In Situ Visualization on Run Time Variability. Our goal in this series of exper-
iments is to show the impact of in situ visualization tasks on the run-time variability
of the simulation, and to show how dedicated cores help alleviate this variability. We
show in particular the effect of interactivity on this variability. We use Nek5000 for
this purpose.

Figure 13 (c) shows the result of a 10-level isosurface rendering of the fluid velocity
along the y axis, with the TurbChannel case. We use the MATiS configuration to show
the scalability of our approach based on Damaris against a standard, time-partitioning
approach.

Results with the TurbChannel Configuration. To assess the impact of in situ visual-
ization on the run time, we run TurbChannel on 48 cores using the two approaches:
first we use a time-partitioning mode, in which all 48 cores are used by the simulation
and synchronously perform in situ visualization. Then we switch on one dedicated core
per node, leading to 46 cores being used by the simulation while 2 cores asynchronously
run the in situ visualization tasks.

In each case, we consider four scenarios:

(1) The simulation runs without visualization;
(2) A user connects VisIt to the simulation but does not ask for any output;
(3) The user asks for isosurfaces of the velocity fields but does not interact with VisIt

any further (letting the Damaris/Viz update the output after each iteration);
(4) The user has heavy interactions with the simulations (for example rendering differ-

ent variables, using different algorithms, zooming on particular domains, changing
the resolution).

Figure 15 presents a trace of the duration of each iteration during the four afore-
mentioned scenarios using the two approaches. Figure 15 (a) shows that in situ vi-
sualization using a time-partitioning approach has a large impact on the simulation
run time, even when no interaction is performed. The simple act of connecting VisIt
without rendering anything forces the simulation to at least update metadata at each
iteration, which takes time. When a visualization scenario is defined but the user does
not interact with the running simulation, the run time still presents a large variability.
This is due to load imbalance across processes and across iterations, as well as network
performance variability when sending visual results to the user. Figure 15 (b) shows
that in situ visualization based on dedicated cores, on the other hand, is completely
transparent from the point of view of the simulation.

Results with the MATiS Configuration. We ran the MATiS configuration on 816 cores
of the stremi cluster. Each iteration takes approximately one minute and due to the size
of the mesh, it is difficult to perform interactive visualization. Therefore we connect
VisIt and simply query for a 3D pseudo-color plot of the vx variable (x component of
the fluid velocity) that is then updated at desired iterations.

For the following results, the time-partitioning approach initially outputs one image
every time step, while dedicated cores adapted the output frequency to one image every
25 time steps in order to avoid blocking the simulation when the shared memory buffer
becomes full. To conduct a fair comparison, we thus setup the time-partitioning mode
such that it outputs one image every 25 iterations.

Figure 16 reports the behavior of the application with and without visualization per-
formed, and with and without dedicated cores, for the configurations described above.
Corresponding statistics are presented in Table IV.
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Fig. 15: Variability in run time induced by different scenarios of in situ interactive visualization.

Table IV: Average iteration time

Iteration Time Average Std. dev.

Time Partitioning w/o vis. 75.07 sec 22,93
with vis. 83.16 sec 43.67

Space Partitioning w/o vis. 67.76 sec 20.09
with vis. 64.79 sec 20.44

Average iteration time of the Nek5000 MATiS configura-
tion with a time-partitioning approach and with dedicated
cores, with and without visualization.

Conclusion. Time-partitioning visualization not only increases the average run time
but also increases the standard deviation of this run time, making it more unpre-
dictable. On the other hand, the approach based on dedicated cores yields more con-
sistent results. One might expect dedicated cores to interfere with the simulation as
it performs intensive communications while the simulation runs. However, in practice
we observe very little such run time variation.

We also remark that decreasing the number of cores used by the simulation can
actually decreases its run time. Nek5000 on Grid’5000, for instance, has to run with a
number of nodes that is too large, in order to have enough memory.

5. DISCUSSION: DEDICATED CORES VS. DEDICATED NODES
Two important questions can be asked about approaches like Damaris, which propose
to dedicate cores for data processing and I/O.

— How many dedicated cores should be used?
— How does dedicating cores compares with dedicating nodes?

In this section we propose to answer these two questions through experiments with
the CM1 and Nek5000 simulations on Grid’5000. We implemented in Damaris the
option to use dedicated nodes instead of dedicated cores. Some details of this imple-
mentation are given hereafter, before diving into our experimental results.
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Fig. 16: Iteration time of the MATiS configuration with a time partitioning approach (top) or a space parti-
tioning approach (bottom), without visualization (left), with visualization (right).

We restrict our study to I/O. The choice of dedicating cores over dedicating nodes for
in situ visualization indeed depends on too many parameters (including the amount
of data involved, the simulation, the platform, and most importantly the visualization
scenarios) and deserves an entire study that we reserve for a future work.

5.1. Dedicated Nodes in Damaris
In order to compare dedicated cores with dedicated nodes, we either needed a state-of-
the-art framework that provides dedicated nodes, such as DataSpace [Rutgers 2015],
or to implement dedicated nodes inside the Damaris framework. We chose the later
because (1) our simulations are already instrumented with Damaris’ API, allowing us
to switch between each approach without having to modify the simulation with another
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framework’s API, and (2) comparing the use of dedicated cores in Damaris with the
use of dedicated nodes in another framework would make it harder to distinguish
performance benefits coming from the approach (dedicated cores vs. dedicated nodes)
from performance benefits coming from specific optimizations of the framework itself.
This following section gives an overview of our implementation of dedicated nodes in
Damaris.

5.1.1. Implementation. The implementation of dedicated nodes in Damaris relies on
asynchronous MPI communications through Damaris’ Distributed Reactor. Each sim-
ulation core is associated with a server running in a dedicated node. A dedicated node
hosts one server on each of its cores. Different simulation cores may thus interact with
the same dedicated node, but with a different core (a different server) in this node.

When a client calls damaris write, it first sends an event to its associated server.
This event triggers a RemoteWrite callback in the server. When the server enters this
callback, it starts a blocking receive to get the data sent by the client. The client sends
its data to the server, along with metadata information such as the id of the variable
to which the data belongs. A buffer is maintained in clients to allow these transfers
to be non-blocking. When the client needs to send data to dedicated nodes, it copies
the data into this buffer and issues a non-blocking send to the server using the copied
data (note that this communication phase is non-blocking in clients, but blocking on
servers). The status of this operation is checked in later calls to the Damaris API and
the buffer is freed when the transfer is completed.

Other solutions exist in the literature, for example using RDMA [Docan et al. 2010]
(remote direct memory access). We chose to use simple asynchronous communications
for simplicity and portability. The flexibility of our design, along with the recent addi-
tion of dynamic RDMA windows in the MPI 3 standard, would ease such an RDMA-
based implementation in Damaris in a near future.

5.1.2. “Switching Gears”. Switching between dedicated cores and dedicated nodes, as
well as changing the number of dedicated resources, can be done through the configu-
ration, without recompiling the application.

— <dedicated cores="n" nodes="0"/> enables n dedicated cores per node. In our cur-
rent implementation of Damaris, the number of cores per node must divide evenly
into the number of dedicated cores.

— <dedicated cores="0" nodes="n"/> enables n dedicated nodes. The total number
of nodes must divide evenly into the number of dedicated nodes.

— <dedicated cores="0" nodes="0"/> disables dedicated cores and nodes. It triggers
the time-partitioning mode.

This configuration would allow for a hybrid approach that uses both dedicated cores
and dedicated nodes. However this approach is not supported by Damaris yet, as we
haven’t found any real-life scenario that would benefit from it.

The implementation of all three approaches –time partitioning, dedicated cores, ded-
icated nodes– within the same framework allows us to evaluate their respective per-
formance in the next sections.

5.2. Dedicated Core(s) vs. Dedicated Nodes: an Experimental Insight
In the following, we present the results obtained with the Nek5000 and CM1 simula-
tions, using the different modes in which Damaris can now operate.

5.2.1. Results with the Nek5000 Application. We used the MATiS configuration of Nek5000
and ran it on 30 nodes (720 cores) of the Grid’5000’s stremi cluster. We deploy PVFS
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Fig. 17: Experiment with Nek5000 on 720 cores of Grid’5000 stremi cluster. Damaris is configured to use
either no dedicated resources (TP), x =1, 2 or 3 dedicated cores (DC(x)), or a ratio of x computation nodes to
y dedicated nodes (DN(x : y)). We report (a) the average, maximum and minimum time of a single iteration
(computation+I/O), and (b) the average, maximum and minimum time (logarithmic scale) of an I/O phase
from the point of view of the simulation.

on 4 additional nodes of this cluster. All nodes (including the file system) communicate
through a 1G Ethernet network.

Nek5000 initially wrote most of its checkpoint/restart data in the form of ASCII
files, which appeared to be highly inefficient compared to using a high-level data for-
mat such as HDF5. We thus rewrote its I/O part as an HDF5-based plugin for Damaris,
and used Damaris in 7 configurations: without dedicated resources (time partitioning,
abbreviated TP), using 1, 2, or 3 dedicated cores per node (abbreviated DC(1), DC(2)
and DC(3)), and using 2, 3 or 5 dedicated nodes (DN(14:1), DN(9:1), DN(5:1) respec-
tively, where the notation x : y represents the ratio of computation nodes to dedicated
nodes). Despite the different number of simulation cores in each configuration, the
same mesh is used as input for Nek5000 and, therefore, the same amount of data is
produced (about 3.5 GB per iteration). We run Nek5000 for 10 such iterations in each
configuration.

Overall run time. All configurations based on dedicated resources enable a 40% de-
crease of overall run time compared with the time-partitioning configuration. Note
that because of the inherent variability of the duration of the computation phases
within a single iteration (represented in Figure 17 (a) by the minimum and maximum
iteration times), it is not possible to tell which of the configuration is actually the best
one. Considering these results only, we can argue that using more dedicated cores or
more dedicated nodes is potentially an advantageous choice (as long as the efficiency
of running your simulation is not affected) because it offers more resources for post-
processing and I/O tasks. The choice of using dedicated cores or dedicated nodes can
then be based on the characteristics of these post-processing time (scalability, memory
requirement, execution time, etc.).

I/O impact. Figure 17 (b) shows that the duration of the I/O phase as perceived
by the simulation becomes negligible when using an approach based on dedicated re-
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Fig. 18: Experiment with Nek5000 on 720 cores of Grid’5000 stremi cluster. Damaris is configured to use
either no dedicated resources (TP), x =1, 2 or 3 dedicated cores (DC(x)), or a ratio of x computation nodes
to y dedicated nodes (DN(x : y)). We report (a) the average, maximum and minimum aggregate throughput
from writer processes, and (b) the spare time in dedicated processes for the approaches that leverage them.

sources. Dedicated cores reduce this time down to about 0.1 seconds, while dedicated
nodes reduce it to about 0.04 seconds. This difference in communication time between
dedicated cores and dedicated nodes can be easily explained. When using dedicated
cores, the client competes with other clients for the access to a mutex-protected seg-
ment of shared memory. When using dedicated nodes on the other hand, this con-
tention does not occur, as each client simply makes a local copy of its data and issues
a non-blocking send that proceeds in parallel with the simulation. Therefore, while
the I/O phase appears faster with dedicated nodes, our results do not show the poten-
tial impact that background communications with dedicated nodes may have on the
performance of the simulation.

Aggregate throughput. From the point of view of writer processes (or from the point
of view of the file system), the different configurations lead to different aggregate
throughput. Figure 18 (a) shows that dedicated cores achieve the highest throughput.
This throughput is slightly degraded as the number of dedicated cores per node in-
creases, due to contention between dedicated cores on the same node. Dedicated nodes
also increase the aggregate throughput compared with time partitioning, but do not
achieve the throughput of dedicated cores. This is due to the fact that all cores in ded-
icated nodes are writing, and thus compete for the network access at the level of each
single dedicated nodes. Additionally, the lower throughput observed when using only
two dedicated nodes can be explained by the fact that the file system features four
data servers. Therefore, dedicating only two nodes does not fully take advantage of
parallelism across writers.

Spare time. Finally, Figure 18 (b) shows the spare time in dedicated resources. In all
configurations based on dedicated cores, the dedicated cores spend 10% of their time
writing, and remain idle 90% of the time. Dedicated nodes spend slightly more time
writing (from 13 to 20% of their time). This is a direct consequence of the difference in
aggregate throughput.
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Conclusion. Overall, all the configurations based on dedicated resources improve
the simulation run time in a similar way. These configurations however differ in other
aspects. By avoiding contention at the level of a node, dedicated cores achieve a higher
throughput and therefore spare more time that can be used for data processing. Yet,
if we weight this spare time by the number of cores that can be used to leverage it
(90 when dedicating 3 cores per node, 120 when dedicating 5 nodes), the configuration
based on 5 dedicated nodes appears to spare more resources (core-seconds) in spite of
sparing less time per core.

The choice of whether one should use an approach based on dedicated cores or ded-
icated nodes is of course not restricted to these considerations. Some memory-bound
simulations may not be able to afford allocating shared memory to dedicated cores,
and would rather benefit from dedicated nodes. Some I/O intensive simulations on the
other hand may not be able to transfer large amounts of data to a reduced number of
dedicated nodes and will prefer dedicated cores.

5.2.2. Results with the CM1 application. In this section, we leverage experiments with the
CM1 simulation to show that the choice of one approach over another also depends on
the platform considered.

We used CM1 on Grid’5000’s Nancy and Rennes sites. On the Nancy site we use the
graphene cluster. Each node of this cluster consists of a 4-core Intel Xeon 2.53 GHz
CPU with 16 GB of RAM. Intra-cluster communication is done through a 1G Ethernet
network. A 20G InfiniBand network is used between these nodes and the OrangeFS
file system deployed on 6 I/O servers.

On the Rennes site we use the parapluie cluster, already presented in Section 4.1.
The nodes communicate with one another through a 1G Ethernet network and with
an OrangeFS file system deployed on 3 servers across a 20G InfiniBand network.

We deploy CM1 on 32 nodes (128 cores) on the Nancy site. On the Rennes site, we
deploy it on 16 nodes (384 cores). In both cases, we configure CM1 to complete 2520
time steps. We vary its output frequency, using 10, 20 or 30 time steps between each
output. Damaris is configured to run with CM1 in five different scenarios that cover
the three I/O approaches considered: time partitioning, dedicated cores (one or two –
DC(1) and DC(2)), and dedicated nodes using a ratio of 7:1 (DN(7:1), 7 compute nodes
for one dedicated node) or 15:1 (DN(15:1), 15 compute nodes for one dedicated node).
DN(7:1) thus uses four dedicated nodes on the Nancy site, two on the Rennes site.
DN(15:1) dedicates two nodes on the Nancy site, one on the Rennes site.

Impact of the platform. Figure 19 shows that in both clusters, dedicating resources
drastically improve the performance of CM1 compared with a time-partitioning ap-
proach. Dedicating four nodes on Nancy enables an almost 3⇥ overall speedup, while
dedicating one core in each node on the Rennes cluster leads to more than 5⇥ speedup.
Our results also show that the best approach in terms of overall run time depends on
the platform. It consists of using dedicated nodes with a 7:1 ratio on the Nancy cluster,
and using one dedicated core per node on the Rennes cluster. This conclusion is not
surprising, since the Nancy cluster only provides 4 cores per node. Dedicating some of
these cores thus has a large impact on the simulation. On the Rennes cluster, which
provides 24 cores per node, dedicating some of these cores does not remove such an im-
portant fraction of computational power from the simulation and is thus more efficient
than dedicating nodes.

5.3. Conclusion
Over the years, several research groups have proposed new approaches to I/O and
data processing based on dedicated resources. These approaches can be divided into
a group of approaches based on dedicated cores, and a group of approaches based on
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Fig. 19: Experiment with CM1 on Grid’5000 Rennes (24 cores per node) and Nancy (4 cores per node) sites.
Damaris is configured to use either no dedicated resources (TP), x =1 or 2 dedicated cores (DC(x)), or a ratio
of 7:1 or 15:1 dedicated nodes (DN(7:1) and DN(15:1)). We report total run time for 2520 time steps.

dedicated nodes. While Damaris was initially part of the first one, we extended it to
support a wider range of configurations. It now offers to dedicate either a subset of
cores in each multicore node, or entire nodes. Additionally, it also offers to not dedicate
any resource at all, performing all data processing and movement synchronously. This
flexibility, made possible in particular through a configuration file that allows us to
switch between modes very easily, let us to compare these approaches.

Our results show that dedicating resources for I/O is a highly efficient method to
improve the I/O performance of a simulation, both in terms of overall run time, ag-
gregate throughput and performance variability. They also highlighted the fact that
there is no clear advantage of one approach over the other, at least for the consid-
ered applications: dedicating cores appears more efficient than dedicated nodes under
certain conditions, and the opposite holds under different conditions. The choice of
using dedicated cores or dedicated nodes, and how many of such resources, depends
on the memory requirements of the simulation, the memory requirements of the data
processing tasks running in plugins, the scalability of the simulation, the scalability
of the processing tasks, and the amount of data involved. It is difficult to give rules
of thumbs, although some factors such as a simulation being memory-bound and the
post-processing tasks being memory-hungry, should direct the user to using dedicated
nodes rather than dedicated cores, for example. The strength of Damaris lies in the
fact that switching from dedicated cores to dedicated nodes and changing their num-
bers is only a matter of changing a line in a configuration file, making it possible for
trial-and-error runs in order to find an appropriate configuration. The choice of one
approach over the other may also depend on criteria other than the overall run time.
Our experiments with Nek5000 showed that while this run time is very similar un-
der the different approaches, the resulting aggregate throughput favors dedicating
cores, while the resulting spared resources (spare time ⇥ number of cores in dedicated
resources) advocates for using dedicated nodes. Our experiments with CM1 showed
that the choice of one approach over the other also depends on the platform. While
an approach based on dedicated cores is more suitable on a platform featuring a large

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.



Damaris: Addressing Performance Variability in Data Management for Post-Petascale SimulationsA:33

number of cores per node, it may be more efficient to use dedicated nodes on a platform
with a reduced number of cores per node.

6. RELATED WORK
In this section, we position our work with respect to related work. We start by dis-
cussing approaches that attempt at improving I/O performance. We then examine ap-
proaches to in situ visualization.

6.1. Damaris in the “I/O Landscape”
Through its capability of gathering data into larger buffers and files, Damaris can be
compared to the data aggregation feature in ROMIO [Thakur et al. 1999a]. This fea-
ture is an optimization of Collective I/O that leverages a subset of processes, called
“aggregators”, to actually perform the I/O on behalf of other processes. Yet, data aggre-
gation is performed synchronously in ROMIO: all processes that do not perform actual
writes in the file system must wait for the aggregator processes to complete their oper-
ations. Besides, aggregators are not dedicated processes, they run the simulation after
completing their I/O. Through dedicated cores, Damaris can perform data aggregation
and potential transformations in an asynchronous manner and still use the idle time
remaining in the dedicated cores.

Other efforts focus on overlapping computation with I/O in order to reduce the im-
pact of I/O latency on overall performance. Overlap techniques can be implemented
directly within simulations [Patrick et al. 2008], using asynchronous communications.
Non-blocking I/O primitives started to appear as part of the current MPI 3 standard,
these primitives are still implemented as blocking in practice.

Other approaches leverage data-staging and caching mechanisms [Nisar et al. 2008;
Isaila et al. 2010], or forwarding approaches [Ali et al. 2009] to achieve better I/O
performance. Forwarding architectures run on top of dedicated resources in the plat-
form, which are not configurable by the end-user, that is, the user cannot run custom
data processing in forwarding resources. Similarly to the parallel file system, these
dedicated resources are shared by all users. This leads to cross-application access con-
tention and thus, to I/O variability. However, the trend toward I/O delegate systems
underlines the need for new I/O approaches. Our approach relies on dedicated I/O cores
at the application level, or dedicated nodes bound to the application, rather than re-
lying on hardware I/O-dedicated or forwarding nodes, with the advantage of letting
users configure their dedicated resources to best fit their needs.

The use of local memory to alleviate the load on the file system is not new. The
Scalable Checkpoint/Restart (SRC) by Moody et al. [Moody et al. 2010] already makes
use of node-level storage to avoid the heavy load caused by periodic global checkpoints.
Yet their work does not use dedicated resources or threads to handle or process data,
and the checkpoints are not asynchronous.

Dedicated-Core-Based Approaches. Closest to our work are the approaches by Li et
al. [Li et al. 2010], and Ma et al. [Ma et al. 2006]. While the general goals of these ap-
proaches are similar (leveraging service-dedicated cores for non-computational tasks),
their design is different, and so is the focus and the (much lower) scale of their eval-
uation. The first one mainly explores the idea of using dedicated cores in conjunction
with SSDs to improve the overall I/O throughput. Architecturally, it relies on a FUSE
interface, which introduces unnecessary copies through the kernel and reduces the
degree of coupling between cores. Using small benchmarks we noticed that such a
FUSE interface is about 10 times slower in transferring data between cores than us-
ing shared memory. In the second, active buffers are handled by dedicated processes
that can run on any node and interact with cores running the simulation through the
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network. In contrast to both approaches, Damaris makes a much more efficient design
choice using the shared intra-node memory, thereby avoiding costly copies and buffer-
ing. The approach defended by Li et al. is demonstrated on a small 32-node cluster
(160 cores), where the maximum scale used in the work by Ma et al. is 512 cores on a
Power3 machine, for which the overall improvement achieved for the global run time is
marginal. Our experimental analysis is much more extensive and more relevant for to-
day’s scales of HPC simulations: we demonstrated the excellent scalability of Damaris
on a real supercomputer (Kraken, ranked 11th in the Top500 supercomputer list at the
time of the experiments) with up to almost 10,000 cores, and with the CM1 tornado
simulation, one of the target applications of the Blue Waters post-Petascale supercom-
puter project. We demonstrated not only a speedup in I/O throughput by a factor of
15 (never achieved by previous approaches), but we also showed that Damaris totally
hides the I/O jitter and substantially cuts down the application run time at such high
scales. With Damaris, the execution time for CM1 at this scale is even divided by 3.5
compared to approaches based on collective I/O! Moreover, we further explored how to
leverage the spare time of the dedicated cores. We demonstrated for example that it
can be used to compress data by a factor of 6.

Managing variability through QoS scheduling. While Damaris and the approaches
presented above work at the application’s side, another way of addressing I/O variabil-
ity consists of enforcing quality of service levels in storage systems. Such techniques
mitigate I/O variability by addressing one of its potential sources: the contention be-
tween distinct applications running concurrently on the same platform. While these
techniques cannot hide the I/O variability, they attempt to maintain it within well-
defined bounds.

QoS-based scheduling is used in particular in enterprise storage systems [Gulati
et al. 2007; Wachs et al. 2007] and in the field of cloud computing [Pu et al. 2010],
where pricing models require performance guaranties. It generally involves isolation
techniques and bandwidth allocation to ensure that applications’ I/O performance is
guaranteed. In high-performance computing, however, the lack of a pricing model has
not extensively motivated the implementation of such techniques. Additionally, as seen
above, I/O variability already appears within the processes of a single application be-
cause of contention, communications, or metadata overhead. QoS-based scheduling is
therefore only a secondary solution that mitigates I/O variability provided that the
applications have already individually optimized their I/O.

Zhang et al. [Zhang et al. 2011] propose to meet QoS requirements set by each ap-
plication in terms of application run time. The required application run time is con-
verted into bandwidth and latency bounds through machine learning techniques, so
that bandwidth can be allocated to each application individually.

6.2. Damaris in the “In Situ Visualization Landscape”
Loosely-Coupled Visualization Strategies. Ellsworth et al. [Ellsworth et al. 2006]

propose to use distributed shared memory (DSM) to avoid writing files when perform-
ing concurrent visualization. Such an approach has the advantage of decoupling the
simulation and visualization processes, but reading data from the memory of the sim-
ulation’s processors can increase run time variability. The scalability of a distributed
shared memory design is also a limiting factor.

Rivi et al. [Rivi et al. 2011] introduce the ICARUS plugin for ParaView together with
a description of VisIt and ParaView’s in situ visualization interfaces. ICARUS employs
an HDF5 DSM file driver to ship data to a distributed shared memory buffer that is
used as input to a ParaView pipeline. This DSM stores a view of the HDF5 files that
can be concurrently accessed by the simulation and visualization tools. The HDF5 API
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allows to bridge the simulation and ParaView with minimum code changes (provided
that the simulation already uses HDF5), but it produces multiple copies of the data and
a complete transformation of data into an intermediate HDF5 representation. Also, the
visualization library on the remote resource requires the original data to conform to
this HDF5 representation. Damaris, on the other hand, is not based on any data format
and efficiently leverages shared-memory to avoid as much as possible unnecessary
copies of data. Besides, its API is simpler than that of HDF5 for simulations that do
not already use HDF5.

Malakar et al. [Malakar et al. 2010] present an adaptive framework for loosely-
coupled visualization, in which data is sent over a network to a remote visualization
cluster at a frequency that is dynamically adapted depending on resource availability.
Our approach also adapts output frequency to resource usage.

The PreDatA [Zheng et al. 2010] middleware proposes to dedicate a set of nodes as
a staging area to perform a first step of data processing prior to I/O for the purpose of
subsequent visualization. The coupling between the simulation and the staging area is
done through the ADIOS [Lofstead et al. 2008] I/O layer. The use of the ADIOS back-
end allows to decouple the simulation and the visualization by simply integrating data
analysis as part of an existing I/O stack [Zheng et al. 2011]. While Damaris borrows
the use of an XML file from ADIOS in order to simplify its API, it makes the orthogonal
choice of using dedicated cores rather than dedicated nodes. Thus it avoids potentially
costly data movements across nodes.

GLEAN [Rasquin et al. 2011] provides in situ visualization capabilities with dedi-
cated nodes. The authors use the PHASTA simulation on the Intrepid supercomputer
and ParaView for analysis and visualization on the Eureka machine. Part of the anal-
ysis in GLEAN is done in a time-partitioning manner at the simulation side, which
makes it a hybrid approach involving tightly- and loosely-coupled in situ analysis. Our
approach shares some of the same goals, namely to couple a simulation with run-time
visualization, but we run the visualization tool on one core of the same node instead
of dedicated nodes. GLEAN is also used in conjunction with ADIOS [Moreland et al.
2011].

EPSN [Esnard et al. 2006] is an environment providing steering and visualization
capabilities to existing parallel simulations. Simulations instrumented with EPSN
ship their data to a visualization pipeline running on a remote cluster, thus EPSN
is an hybrid approach including both code changes and the use of additional remote
resources. In contrast to EPSN, all visualization tasks using Damaris can be performed
on dedicated cores, closer to the simulation, thus reducing the network overhead.

Zheng et al. [Zheng et al. 2011] have provided a model to evaluate the tradeoff
between in situ synchronous visualization and loosely-coupled visualization through
staging areas. This model can be applied to compare in situ using dedicated cores
instead of remote resources, with the difference being that approaches utilizing dedi-
cated cores do not have network communication overhead.

Tightly-Coupled In Situ Visualization. SciRun [Johnson et al. 1999] is a complete
computational-steering environment that includes visualization. Its in situ capabili-
ties can be used with any simulation implemented with SciRun solvers and structures.
SciRun is an example of the trend towards integrating visualization, data analysis and
computational steering in the simulation process. Simulations are written specifically
for use in SciRun in order to exchange data with zero data copy, but adapting an exist-
ing application to this framework can be a daunting task.

DIY [Peterka et al. 2011] offers a number of communication primitives allowing to
easily build efficient parallel in situ analysis and visualization algorithms. However
it does not aim to provide a way to dedicate resources on which to run these algo-
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rithms. DIY could therefore very well be coupled with Damaris to implement powerful
in situ analysis algorithms while Damaris provides the flexibility of running them on
dedicated resources.

Tu et al. [Tu et al. 2006] propose an end-to-end approach for an earthquake simu-
lation using the Hercule framework. All the components of the simulation, including
visualization, run in parallel on the same machine, and the only output consists of a
set of JPEG files. The data processing tasks in Hercule are still performed in a syn-
chronous manner, and any operation initiated by a process to perform these tasks
impacts the performance of the simulation.

In the context of ADIOS, CoDS (Co-located DataSpaces) [Zhang et al. 2012a] builds
a distributed object-based data space abstraction and can use dedicated nodes (and
recently dedicated cores with shared memory) with PreDatA, DataStager and DataS-
pace. ADIOS+CoDS has also been used for code coupling [Zhang et al. 2012b] and
demonstrated with different simulation models. While the use of dedicated cores to
accomplish two different tasks is a common theme in our approach, our objective in
this chapter was to compare the performance impact on the simulation of a collocated
visualization task with a directly embedded visualization. Besides, placement of data
in shared memory in the aforementioned works is done through the ADIOS interface,
which creates a copy of data from the simulation to the shared memory using a file-
writing interface. We leverage the double-buffering technique usually implemented in
simulations as an efficient alternative for sharing data.

Posteriorly to our work, Dreher and Rafin [Dreher et al. 2014b] built on the FlowVR
framework (initially proposed for real-time interactive parallel visualization in the
context of virtual reality) to provide a solution integrating both time partitioning, ded-
icated cores and dedicated nodes. They address usability by providing a simple put/get
interface and a Python script that describes the various component of the visualiza-
tion pipeline. They went one step further by providing in situ interactive simulation
steering in a cave-like system with haptic devices [Dreher et al. 2014a], highlighting a
case where the simulation process and research are part of the same workflow.

7. CONCLUSION AND FUTURE DIRECTIONS
As HPC resources exceeding millions of cores become a reality, science and engineer-
ing codes invariably must be modified in order to efficiently exploit these resources.
An important challenge in maintaining high performance is data management, which
nowadays does not only include writing and storing data efficiently, but also analyzing
and visualizing these data in order to retrieve a scientific insight.

This paper provides a comprehensive overview of Damaris, an approach which pro-
poses to offload data management tasks, including I/O, post-processing and visual-
ization, into dedicated cores of multicore nodes. Damaris efficiently leverages shared-
memory to improve memory usage when transferring data from cores running the
simulation to cores running data-related tasks. Thanks to its plugin system and an ex-
ternal description of data, Damaris is highly adaptable to a wide range of simulations.

We first used Damaris to offload I/O tasks in dedicated cores, and compared the re-
sulting performance with the two standard approaches to I/O in HPC simulations: the
File-per-process and the Collective I/O approaches. By gathering I/O operations in a re-
duced number of cores and by avoiding synchronization between these cores, Damaris
is able to completely hide all I/O-related costs, and in particular the I/O variability. Our
experiments using the CM1 atmospheric simulation and the Nek5000 computation
fluid dynamic, in particular on up to 9216 cores of the Kraken supercomputer, showed
that Damaris can achieve a 15 times higher throughput compared with the collective
I/O approach. Damaris also dramatically reduces the application run time, leading
to a 3.5⇥ speedup in CM1, for example. Observing that dedicated cores still remain
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idle a large fraction of the time, we implemented several improvements, including an
overhead-free data compression that achieved up to 600% compression ratio.

We then leveraged the time spared by Damaris on dedicated cores by extending
it to support in situ visualization through a connection with the VisIt visualization
software. We evaluated our Damaris-based in situ visualization framework on the
Grid’5000 and Blue Waters platforms. We showed that Damaris can fully hide the
performance variability induced by in situ visualization tasks as well, even in scenar-
ios involving interactions with a user. Besides, Damaris reduces visualization-related
code modifications to a minimum in existing simulations.

Finally we further extended Damaris to support the use of dedicated nodes instead
of dedicated cores. Based on our framework, we performed a thorough comparison of
the dedicated cores, dedicated nodes and time-partitioning approaches for I/O on 3 dif-
ferent clusters of the Grid’5000 testbed, with the CM1 and Nek5000 simulations. Our
evaluation shows that approaches based on dedicated resources always perform better
than the time-partitioning approach for the selected simulations. They both manage
to hide the I/O-related costs and, as a result, improve the overall simulation perfor-
mance. While the choice of an approach based on dedicated cores over an approach
based on dedicated nodes is primarily driven by the number of cores per node avail-
able in the platform, this choice also depends on the scalability of the application, its
memory usage, and the potential use of spare time in dedicated resources.

To our knowledge, Damaris is the first middleware available to the community7 that
offers the use of dedicated cores or dedicated nodes to serve data management tasks
ranging from I/O to in situ visualization. This work paves the way for a number of
new research directions with high potential impact. Our study of in situ visualization
using Damaris and CM1 revealed that in some simulations such as climate models, an
important fraction of the data produced by the simulation does not actually contain
any part of the phenomenon that are of interest to scientists. When visualizing this
data in situ, it thus becomes possible to lower the resolution of non-interesting parts
in order to increase the performance of the visualization process, an approach that we
call “smart in situ visualization”. Challenges to implement smart in situ visualization
include automatically discriminating relevant and non-relevant data within the simu-
lation while this data is being produced. This detection should be made without user
intervention and be fast enough to not diminish the overall performance of the visu-
alization process. The plugin system of Damaris together with its existing connection
with the VisIt visualization software provide an excellent ground to implement and
evaluate smart in situ visualization.

We also plan to investigate ways to reduce the energy consumption of simulations
that use approaches like Damaris. We have already shown that the time spared by
dedicated cores in Damaris can be leveraged to compress the data prior to storing
it. An immediate question that can be asked is to which extent does compression in
Damaris impacts this energy/performance tradeoff. On one hand, compression reduces
the amount of data transferred and thus, the network traffic, which leads to lower
energy consumption from data movements. On the other hand, compressing data re-
quires more computation time and higher energy consumption as a result of data
movement in the local memory hierarchy. Consequently, a promising direction will con-
sist in investigating the tradeoff between energy, performance and compression level.
We will also investigate how to use the Damaris approach in the context of out-of-core
computation. This technique, usually meant for simulations whose data do not fit in
memory, poses new challenges for Damaris to efficiently prefetch data from storage
and monitor its memory usage.

7See http://damaris.gforge.inria.fr
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Fig. 20: Example of a 4 ⇥ 4 ⇥ 4 rectilinear
grid described by three arrays of coordinates.
In this example there is a scalar value (such
as temperature or wind velocity) at each node.
The mesh itself is described through three coor-
dinate arrays: mesh x = {0.0,1.0,2.0,3.0};
mesh y = {0.0,1.0,2.0,3.0}; mesh z =
{0.0,1.2,1.8,3.0}.
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A. CODE SAMPLE USING DAMARIS
Listing 1 is an example of a Fortran program that makes use of Damaris. It writes
three 1D arrays representing the coordinates of a rectilinear mesh. At every iteration
it then writes a 3D array representing temperature values on the points of the mesh
and sends an event to the dedicated core. Line 7 initializes Damaris using a configu-
ration file. Line 8 starts the servers on dedicated resources. From line 10 to 29, the
client code, that is, the simulation’s main loop, is executed. This main loop include
calls to damaris write whenever data has to be transmitted to the servers, and calls to
damaris signal whenever a plugin should be called. The damaris end iteration func-
tion is used to notify the servers that an iteration of the simulation has completed,
leading the servers to take appropriate decisions such as purging the memory from
old data or updating in situ visualization backends. Line 28 is executed by all clients
to stop the servers on dedicated resources after leaving the main loop. Damaris is
finalized line 32, cleaning up resources such as shared memory and communication
channels.

The associated configuration file, shown in Listing 2, describes the data that is ex-
pected to be received by the servers, and the action to perform upon reception of the
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1 program example
2 integer ierr, is_client
3 real, dimension(64,16,2) :: temperature
4 real, dimension(4) :: x3d, y3d, z3d
5
6 ! initialization

7 call damaris_initialize_f("config.xml", MPI_COMM_WORLD, ierr)
8 call damaris_start_f(is_client, ierr)
9

10 if(is_client.eq.1) then
11
12 ! writing non-time-varying data

13 call damaris_write_f("coordinates/x3d", x3d, ierr)
14 call damaris_write_f("coordinates/y3d", y3d, ierr)
15 call damaris_write_f("coordinates/z3d", z3d, ierr)
16
17 do while(...) ! simulation main loop

18 ...
19 ! writing temperature data

20 call damaris_write_f("temperature", temperature, ierr)
21 ! sending signal

22 call damaris_signal_f("my_event", ierr)
23 ! end of iteration

24 call damaris_end_iteration_f(ierr)
25 ...
26 enddo
27 ! stopping the servers

28 call damaris_stop_f(ierr)
29 endif
30
31 ! finalization

32 call damaris_finalize_f(ierr)
33 end program example

Listing 1: Example of Fortran simulation using Damaris.

event. More specifically, lines 14, 15, 16 and 18 of this XML file define layouts, which
describe the type and dimensions of a piece of data. Lines 26 to 33 define a group, and
within this group a set of variables that use these layouts. The temperature variable
is defined in line 35. Finally line 38 associates an event with a function (or action) to
be called when the event is received. It also locates the function within a dynamically-
loaded library.

The configuration file also contains information for visualization software. Lines 20
to 24 in the XML file correspond to mesh structure drawn in Figure 20, and built from
the three coordinate variables. The temperature variable is mapped onto this mesh
using its mesh attribute.

REFERENCES
Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten Schwan, and Fang Zheng. 2009.

DataStager: Scalable Data Staging Services for Petascale Applications. In Proceedings of the 18th ACM
International Symposium on High Performance Distributed Computing (HPDC ’09). ACM, New York,
NY, USA, 39–48. DOI:http://dx.doi.org/10.1145/1551609.1551618

Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang, Robert Latham, Robert Ross, Lee Ward,
and Ponnuswamy Sadayappan. 2009. Scalable I/O Forwarding Framework for High-Performance Com-
puting Systems. In Proceedings of the IEEE International Conference on Cluster Computing and Work-
shops, 2009. CLUSTER ’09. DOI:http://dx.doi.org/10.1109/CLUSTR.2009.5289188

ANL. 2015. Mpich. http://www.mpich.org. (2015).
George H. Bryan and J. Michael Fritsch. 2002. A Benchmark Simulation for Moist Non-

hydrostatic Numerical Models. Monthly Weather Review 130, 12 (2002), 2917–2928.
DOI:http://dx.doi.org/10.1175/1520-0493(2002)130h2917:ABSFMNi2.0.CO;2

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/1551609.1551618
http://dx.doi.org/10.1109/CLUSTR.2009.5289188
http://www.mpich.org


A:40 M. Dorier et al.

1 <simulation name="my_simulation" language="c"
2 xmlns="http://damaris.gforge.inria.fr/damaris/model">
3 <architecture>
4 <domains count="1"/>
5 <dedicated cores="1"/>
6 <buffer name="the_buffer" size="67108864" />
7 <queue name="the_queue" size="100" />
8 </architecture>
9 <data>

10 <parameter name="w" type="int" value="4" />
11 <parameter name="h" type="int" value="4" />
12 <parameter name="d" type="int" value="4" />
13
14 <layout name="mesh_x_layout" type="float" dimensions="w" />
15 <layout name="mesh_y_layout" type="float" dimensions="h" />
16 <layout name="mesh_z_layout" type="float" dimensions="d" />
17
18 <layout name="data_layout" type="double" dimensions="w,h,d"/>
19
20 <mesh name="mesh3d" type="rectilinear" topology="3">
21 <coord name="coordinates/x3d" unit="m" label="Width"/>
22 <coord name="coordinates/y3d" unit="m" label="Height"/>
23 <coord name="coordinates/z3d" unit="m" label="Depth"/>
24 </mesh>
25
26 <group name="coordinates">
27 <variable name="x3d" layout="mesh_x_layout"
28 visualizable="false" time-varying="false" />
29 <variable name="y3d" layout="mesh_y_layout"
30 visualizable="false" time-varying="false" />
31 <variable name="z3d" layout="mesh_z_layout"
32 visualizable="false" time-varying="false" />
33 </group>
34
35 <variable name="temperature" layout="data_layout" mesh="mesh3d"/>
36 </data>
37 <actions>
38 <event name="my_event" action="my_function" using="my_plugin.so" />
39 </actions>
40 </simulation>

Listing 2: Configuration file associated with the Fortran example.

Philip H. Carns, Walter B. Ligon, III, Robert B. Ross, and Rajeev Thakur. 2000. PVFS: a Parallel File System
for Linux Clusters. In Proceedings of the 4th annual Linux Showcase & Conference - Volume 4. USENIX
Association, Berkeley, CA, USA, 1.

Christian M Chilan, M Yang, Albert Cheng, and Leon Arber. 2006. Parallel I/O Performance Study with
HDF5, a Scientific Data Package. TeraGrid 2006: Advancing Scientific Discovery (2006).

H. Childs, D. Pugmire, S. Ahern, B. Whitlock, M. Howison, and others. 2010. Extreme Scaling of Production
Visualization Software on Diverse Architectures. IEEE Computer Graphics and Applications (2010),
22–31.

Ciprian Docan, Manish Parashar, and Scott Klasky. 2010. Enabling High-Speed Asynchronous Data Ex-
traction and Transfer Using DART. Concurrency and Computation: Practice and Experience (2010),
1181–1204. DOI:http://dx.doi.org/10.1002/cpe.1567

Stephanie Donovan, Gerrit Huizenga, Andrew J. Hutton, C. Craig Ross, Martin K. Petersen, and Philip
Schwan. 2003. Lustre: Building a File System for 1000-node Clusters. In Proceedings of the 2003 Linux
Symposium. Citeseer.

Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh Orf. 2012a. Damaris: How to
Efficiently Leverage Multicore Parallelism to Achieve Scalable, Jitter-free I/O. In Proceedings of the
IEEE International Conference on Cluster Computing (CLUSTER ’12). IEEE, Beijing, China. http://hal.
inria.fr/hal-00715252

Matthieu Dorier, Gabriel Antoniu, Franck Cappello, Marc Snir, and Leigh Orf. 2012b. Damaris: Leveraging
Multicore Parallelism to Mask I/O Jitter. Research Report RR-7706. INRIA. 36 pages. http://hal.inria.
fr/inria-00614597

ACM Transactions on Parallel Computing, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1002/cpe.1567
http://hal.inria.fr/hal-00715252
http://hal.inria.fr/hal-00715252
http://hal.inria.fr/inria-00614597
http://hal.inria.fr/inria-00614597


Damaris: Addressing Performance Variability in Data Management for Post-Petascale SimulationsA:41

Matthieu Dorier, Gabriel Antoniu, Robert Ross, Dries Kimpe, and Shadi Ibrahim. 2014. CALCioM: Mit-
igating I/O Interference in HPC Systems through Cross-Application Coordination. In Proceedings of
the IEEE International Parallel and Distributed Processing Symposium (IPDPS ’14). Phoenix, Arizona,
USA. http://hal.inria.fr/hal-00916091

Matthieu Dorier, R. Sisneros, Roberto, Tom Peterka, Gabriel Antoniu, and B. Semeraro, Dave. 2013.
Damaris/Viz: a Nonintrusive, Adaptable and User-Friendly In Situ Visualization Framework. In Pro-
ceedings of the IEEE Symposium on Large-Scale Data Analysis and Visualization (LDAV ’13). Atlanta,
Georgia, USA. http://hal.inria.fr/hal-00859603

Matthieu Dreher, Jessica Prevoteau-Jonquet, Mikael Trellet, Marc Piuzzi, Marc Baaden, Bruno Raffin, Nico-
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